Copper Chaperone CupA and Zinc Control CopY Regulation of the Pneumococcal cop Operon
نویسندگان
چکیده
Any metal in excess can be toxic; therefore, metal homeostasis is critical to bacterial survival. Bacteria have developed specialized metal import and export systems for this purpose. For broadly toxic metals such as copper, bacteria have evolved only export systems. The copper export system (cop operon) usually consists of the operon repressor, the copper chaperone, and the copper exporter. In Streptococcus pneumoniae, the causative agent of pneumonia, otitis media, sepsis, and meningitis, little is known about operon regulation. This is partly due to the S. pneumoniae repressor, CopY, and copper chaperone, CupA, sharing limited homology to proteins of putative related function and confirmed established systems. In this study, we examined CopY metal crosstalk, CopY interactions with CupA, and how CupA can control the oxidation state of copper. We found that CopY bound zinc and increased the DNA-binding affinity of CopY by roughly an order of magnitude over that of the apo form of CopY. Once copper displaced zinc in CopY, resulting in operon activation, CupA chelated copper from CopY. After copper was acquired from CopY or other sources, if needed, CupA facilitated the reduction of Cu2+ to Cu1+, which is the exported copper state. Taken together, these data show novel mechanisms for copper processing in S. pneumoniae. IMPORTANCE As mechanisms of copper toxicity are emerging, bacterial processing of intracellular copper, specifically inside Streptococcus pneumoniae, remains unclear. In this study, we investigated two proteins encoded by the copper export operon: the repressor, CopY, and the copper chaperone, CupA. Zinc suppressed transcription of the copper export operon by increasing the affinity of CopY for DNA. Furthermore, CupA was able to chelate copper from CopY not bound to DNA and reduce it from Cu2+ to Cu1+. This reduced copper state is essential for bacterial copper export via CopA. In view of the fact that innate immune cells use copper to kill pathogenic bacteria, understanding the mechanisms of copper export could expose new small-molecule therapeutic targets that could work synergistically with copper against pathogenic bacteria.
منابع مشابه
The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae.
High levels of copper are toxic and therefore bacteria must limit free intracellular levels to prevent cellular damage. In this study, we show that a number of pneumococcal genes are differentially regulated by copper, including an operon encoding a CopY regulator, a protein of unknown function (CupA) and a P1-type ATPase, CopA, which is conserved in all sequenced Streptococcus pneumoniae strai...
متن کاملRole of copper efflux in pneumococcal pathogenesis and resistance to macrophage-mediated immune clearance.
In bacteria, the intracellular levels of metals are mediated by tightly controlled acquisition and efflux systems. This is particularly true of copper, a trace element that is universally toxic in excess. During infection, the toxic properties of copper are exploited by the mammalian host to facilitate bacterial clearance. To better understand the role of copper during infection, we characteriz...
متن کاملThe stress response protein Gls24 is induced by copper and interacts with the CopZ copper chaperone of Enterococcus hirae.
Intracellular copper routing in Enterococcus hirae is accomplished by the CopZ copper chaperone. Under copper stress, CopZ donates Cu(+) to the CopY repressor, thereby releasing its bound zinc and abolishing repressor-DNA interaction. This in turn induces the expression of the cop operon, which encodes CopY and CopZ, in addition to two copper ATPases, CopA and CopB. To gain further insight into...
متن کاملCop-like operon: structure and organization in species of the Lactobacillale order.
Copper is an essential and toxic trace metal for bacteria and, therefore, must be tightly regulated in the cell. Enterococcus hirae is a broadly studied model for copper homeostasis. The intracellular copper levels in E. hirae are regulated by the cop operon, which is formed by four genes: copA and copB that encode ATPases for influx and efflux of copper, respectively; copZ that encodes a coppe...
متن کاملCopper homeostasis in Enterococcus hirae.
Copper is an essential component of life because of its convenient redox potential of 200-800 mV when bound to protein. Extensive insight into copper homeostasis has only emerged in the last decade and Enterococcus hirae has served as a paradigm for many aspects of the process. The cop operon of E. hirae regulates copper uptake, availability, and export. It consists of four genes that encode a ...
متن کامل